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ABSTRACT P‘ i

The stability of a high-speed, axisymmetric boundary layer is investigated using
secondary instability theory and direct numerical simulation. Param..ric studies based
on temporal secondary instability theory identify subharmonic secondary instability as
a likely pat to transition on a cylinder at Mach 4.5. The theoretical predictions are
validated by direct numerical simulation of temporally-evolving primary and secondary
disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the
secondary disturbance, predicted growth rates agree to several significant digits with
values obtained from the spectrally-accurate solution of the compressible Navier-Stokes
equations. Qualitative agreement persists to large amplitudes of the secondary distur-
bance. Moderate transverse curvature is shown to significantly affect the growth rate
of axisymmetric "second mode" disturbances, the likely candidates of primary instabil-
ity. The influence of curvature on secondary instability is largely indirect but most
probably significant, through modulation of the primary disturbance amplitude.
Subharmonic secondary instability is shown to be predominantly inviscid in nature,
and to account for spikes in the Reynolds stress components at or near the critical
layer.

t+ This research was supported in part by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18605 while the third author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, pton, Virginia 23665.




1. OVERVIEW

Renewed interests in the development of high-speed civil transport (HSCT) aircraft and the hyper-
sonic National Acrospace Plane (NASP) have rekindled research in the arca of high-speed transition
prediction and control.  With increased Mach number and higher flight altitude, the length of the transi-
tional flow region increases, cxtending over large portions of aircraft surfaces. In general, realistic drag
and surface heating estimates arc essential to the design of high-speed aircraft and depend on accurate
prediction of transition locations and extent.

In 1his paper, we combine secondary instability thcory (SIT) with direct numerical simulation
(DNS) to investigate the stability of high-speed boundary-layer flow along a prototypical "fusclage"”;
i.e., a cylinder., Specifically, we focus on the lingar and initial nonlinear stages of forced transition, via
a subharmonic secondary instability route. We find sccondary instability theory and direct numerical
simulation to complement onc another in several ways. First, in the absence of high-speed experimental
data, DNS provides a mcans to substiantiate theory and to establish the limits of its validity. Seccond,
within its region of validity, secondary instability thcory is preferable 1o computationally-intensive
numerical simulation to cxplore the parameter space. Third, when the nonlinear stages of a controlied
instability process are simulated numerically, initial conditions derived from SIT provide a "jump start”,
thereby reducing significantly the integration times necessary (o attain highly nonlincar states.

In the next section we review some experimental and theoretical results which are relevant 1o ins-
tability processes on cylinders. After briefly defining the geometry. governing cquations, and nondi-
mensionalization in the third section, in Scction 4 we address, wn general, how transverse curvature
influences instability mechansims. As a preface 1o the discussion of secondary instability theory in Scc-
tion 6, we discuss rclevant results from temporal lincar stability theory for compressible flows in Sec-
tion 5. In Section 7, results of direct numerical simulation are presented and are compared with theory.

Closing obscrvations arc offered in the final section.




2. REVIEW

Whereas instability mechanisms in incompressible boundary layers have been swudied extensively,
rescarch interest in the stability of compressible flows has been sporadic.  Following the pioncering
work of Lees and Lin [1] in 1946, there was a very active period in compressible stability rescarch
which lasted into the early 1960’s. After nearly two decades of relative dormancy, interest in this area
was revived in the mid 1980°s when national aticntion was directed toward HSCT and NASP. Theoret-
ical papers remain refauvely few and experimental results are still quite rare.  Although classical lincar
stability theory has been thoroughly validated for incompressible boundary layers (most notably [2]), the
only existing confirmations of supersonic and hypersonic stability thcory of which the authors are aware
arc thosc of Laufer and Vrcebalovich [3] and Kendall [4]. The former cxperiment investigaics super-
sonic flow over a flat plate; the latter cxamines supersonic and hypersonic flow over a flat plate and
hypersonic flow over a cone. Although the agrcement between linear theory and these experiments is
imperfect, it is encouraging, given the difficulty of making accurate measurcments in a high-speed flow
environment.  The sitwation is well summarized by Laufer and Vrebalovich [3] who state: "In general,
the experiments confirm the basic assumptions and predictions of the cxisting stability theory and also
suggest the desirability of improvement in the theory in certain phases of the problem”.  With regard to
direct numerical simulation, there have been only a handful of stability simulations for compressible
flows (c.g. [5]), and all of these within the past five years, as rcported by Kleiser and Zaig in dicir
recent review article [6]. In gencral, there remains a great need for carefully conducted experiments on \
compressible transition, well-coordinated with theoretical analyscs and direct numerical simulations.

Conceming the cylinder, it is known from the experiment of Brown, conducted in 1957 and only
recently published [7], that natural transition on a cylinder in a subsonic, axial flow occurs via the now
classical sccondary instability route as described by Herbert and coworkers [8,9]. Brown’s cxperiment
shows cxplosive sccondary instability emerging from axisymmetric, finitc-amplitude Tollmicn-

Schlichting (TS) instability waves. The wavelengths in the streamwise and azimuthal directions are
roughly equal and the sccondary instability is of subharmonic (H) type as cvidenced by a staggered

arrangement of A-vortices. More recently, Kegelman and Mucller [10] have vuserved boih fundamental
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(K) type and subharmonic (H) type sccondary instabilitics in forced transiion cxperiments on an ogive-
cylinder in a low-speced flow. At low levels of forcing and in natural transition, the staggered vortex
arrangement is favored, whercas at high forcing ampliwdes the tendency is toward the aligned (K)
arrangement. Qualitatively, this is in keeping with observations of transition in flat-platc boundary
layers as reported in [6).

With regard to (spatial) stability theory for incompressible flovs along cylinders, Kao and Chow
[11] show curvature to have a stabilizing wend on TS instability waves, characterized by a shift of the
neutral curve toward higher Reynolds numbers in the frequency-Reynolds number stability plane.

Experiments of transition in supersonic flows along cylinders arc quite rarc. Among these few
are the ballistic range experiments of Sciff and Short [12] and Whitfield and lannuzzi [13]. In the
former experiment. remarkable shadowgraph photographs capture laminar-turbulent transition, and, in
on¢ test case, a turbulent burst. Curiously, in the latier experiment, transition data on cones ar¢ com-
pared 10 data for a hollow cylinder, which the authors claim to be "equivalent to a flat platc”. Our
findings do not support this equivalence. There have been, however, several transition experiments on
cones [4,13-18], which arc particularly enlightening. Despite simplifying assumptions which neglect
some cffects of transverse curvature, Mack {19} obtains qualitative agreement between lincar theory and
an experiment by Stetson and coworkers {14] which investigates Mach 8 flow past a sharp, 7-degree
half-angle cone. The frequency of the most amplified disturbance and the ncutral-curve obtained
analytically by Mack match closely the experimentally-observed values. However, observed and
predicied growth rales differ considerably,  Another experiment of particular interest is the flow visuali-
zation experiment of Fischer and Weinstein [15] on a shallow cone in a very high-spced flow (frees-
tream Mach number of 20) in helium. Fischer and Weinstein observe transition 1o originate near the
critical layer and o propagate inward 1o the body over a relatively long distance. For hypersonic flow
over a cone, Kendall [4]) observes in the boundary layer "well-ordered rope-like waves ..., which persist
for relatively long distances and which culminate in transition”. These latier two results among others
suggest at least two qualitative differences between low-speed and high-speed transition mechanisms: at

high speeds the transition region is relatively long: and at high-speeds transition originates near the crit-




ical layer rather than near the wall.

With regard to the theory of stability for high-speed flows along cylinders, Duck [206] shows
transverse curvature 1o have a stabitizing influence on inviscid, axisymmetric instability modes at (edge)
Mach numbers of 2.8 and 3.8. On the basis of spatial lincar stability, Malik and Spall [21] show a
similar tendency for axisymmetric “seccond-mode” disturbances at Mach 5.0. However, they also find
that "first-mode” instability waves can be destabilized by increasing curvature. These results are corro-
borated using temporal linear stability theory by Macaracg and Daudpota [22] aud by Pructt and Sucett
[23].

Finally, Ng and Erlcbacher [24] examine secondary instability mechanisms in compressible flat-
plate boundary layers for a variety of edge Mach numbers up to 4.5 and find subharmonic secondary
instability to be a likely path to transition in high-speed flow. Unlike the explosive nature of secondary
instability in incompressible flow, secondary instabilitics in hypersonic flows typically grow more gra-
dually, with amplification ralcs only somcwhat larger than that of the most unstable primary distur-

bance.

These experimental and theoretical findings provide a tentative basis with regard to the investiga-
tion of high-speed instability preeesses on cylinders o follow. First, compressible linear stability theory
is applicable, at least qualitatively. Second, transverse curvature may have a non-negligible influcnce

on stability. And third, instabilitics at high spceds may differ fundamentally {rom thosc at low speeds.

3. GEOMETRY, GOVERNING EQUATIONS, AND NONDIMENSIONALIZATION
Coordinate System and Geverning Equations

Consider the compressible. axial flow along a cylinder of radius R', as shown in Fig. 1. If
(u' v w') denote velocity components in the cylindrical coordinate system (x' 9, rt ), and p' and 7"
denote the fluid density and temperature, respectively, then the flow is governed by the compressible
Navicr-Stokes cquations in cylindrical coordinates, as given in Appendix E of Thompson [25].

Throughout this discussion, dimensional quantitics are denoted by superscript *. Qur interest is in the
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stability of the boundary layer downstream of the bow shock. Accordingly, we assume the post-shock
boundary-laycr edge conditions to be constant. And, for convenience, we define the wall-normal coor-

dinaie 2" =r" - R".

Nondimensionalization

To reduce the parameter space and to gain physical insight, it is desirable to render the goveming
equations dimensionless. For the problem at hand, it is most convenient to scale flow quantitics by
their respective edge values, denoted by subscript "¢”, and 1o scale lengths by a reference length L 10
be defined shortly. The following parameters then appear in the dimensionless governing equations:

M., the edge Mach number; P~, the Prandu number; Re, ., the Reynolds number based on L"; and v,

the ratio of specific heats. Specifically, these are defined as follows:

u, Cou. UL’ C,
M=% L pr=he g2 Pte o g m
L *
aﬂ Ke l‘le Cv

In egs. (1), C, and C. are respectively the specific heats at constant pressure and volume, and g, is the
speed of sound. The ratio of specific heats and the Prandt] number are assumed here 10 be consiant
with values of 1.4 and 0.7, respectively. The viscosity p, and the thermal conductivity k. arc each

assumed to vary with temperature according 10 Sutherland’s law; namely,

T TV+CY) 7 1,
wo_ox 2 o o2 @
He K [+C1 Ie 1e

where dimensional temperatures are expressed in degrees Rankine and 7;=198.6°R .
There are several possible choices of length scale L*. For consistency with the work of others,

wE usc

' Ve
L = \/ : 3)
U

where vo=p./p, is the kinematic viscosity. An alternate length scale is the boundary-layer
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displaccment thickness defined by
& = -t (4a)
0 e Ue
5 1+ 2y = Jo -5 e (4b)
2R 0 R e Ue

Equation (4a) is the standard definition for planar boundary layers, whereas (4b) applics to thick
axisymmetric boundary layers [26]. Note that (4b) involves the solution of a quadratic equation and
that, for very large radius R", (4b) degencrates 1o (4a). At Mach 4.5 and 8°/R"20.1, for example,

equations (4a) and (4b) differ in 8" by about 0.5%.

4. EFFECTS OF TRANSVERSE CURVATURE

Whereas the boundary layer along a flat plate is sclf-similar in the absence of a streamwise pres-
sure gradient, that along a cylinder is non-similar., It can be argued that self-similarity is possible only
for geometries in which there is no inherent length scale, as is the casc for semi-infinite flat plates and
wedges. In contrast, the cylinder has a characteristic radius R*. As the boundary-layer displacement

thickness 8 grows in the strcamwise dircction while the radius remains fixed, their ratio

C=— 3

by which we quantify the curvature C, increases in the streamwise direction, destroying self-similarity.
Transverse curvature C affects boundary-layer stability in two ways: "directly”, through the cur-
vaiure terms which appear in the lincarized disturbance equations when expressed in the nawral cylindr-
ical coordinate systcm; and “indirectly”, through streamwisc evolution of the non-similar mean flow.
Figure 2, obtained from the spectrally-accurate boundary-layer code of Pructt and Strectt (23], shows
the strcamwise cvolution of the mean streamwise velocity and the mean temperature in the boundary

layer on a cylinder in a high-speed flow. The edge Mach number is 4.5 and the edge temperature is




110°R (wind tunnel conditions). Each curve of the family corresponds to a unique curvature C, or
equivalently, 10 a unique strcamwise station x*. Thus, it is useful to think of curvature as a function of

the streamwise coordinate; i.e., C=C(x"). From cys. (3) and (5) we obtain

——
C = l~_ ‘E—_'E: (6)
JRe,. VR L
where
cUR’
Re,. = PR )
He

From eq. (6) it is clear that C (x") depends on three dimensionless quantities: the Reynolds number
based on radius; the dimensionless streamwise coordinate, also based on radius (i.e., x*/R”); and the
ratio of length scales 8"/L". Of these three quantities, the first two are free parameters, whereas, as it
will become clear, the latter 1s not. Typically, for acrodynamic applications, C<<1. However, small C
does not imply immediately that curvature effects are negligible, as will be shown.

Table 1 below compares the flight cnvironments and geometric characteristics of a variety of
high-speed flight vehicles. In the table, M. is the cruise (freestrcam) Mach number, h is the cruise
altitude in frx10, R, is the maximum radius of the fusclage in feet, Re, is the freestream unit Rey-
nolds number at cruisc conditions in units of f17'x10%, and A is the fusclage aspect ratio based on the

maximum radius; i.c., A={"/R,,, where " is the length of the fuselage.

Flight Environments
Vehicle M., h Re | R:. A
F-15 1.55 37 3.54 - -
Bocing HSCT {27] 1.7 44 3.01 T6.7 T45.
MD HSCT (28] 3.2 65-70 1.50-2.03 "84 T 37.
NASA HSCT (29} 2.62 60-68 1.42-2.17 5.765 54.6
Reentry Cone (18] 20.1-18.2 140-40 31-40. 1.14 11.4
NASP >10 >100 2-5 ~10. >20

Table I. Flight environments of various high-speed vehicles




In general the trend for all three quantitics which alfeet curvaware s toward greater influence with
increased Mach number. First, as the table shows, unit Reynolds numbers tend to decrease with the
higher operational altitudes of faster vehicles. Consequently, Re, . tends o decrease with increasing
Mach number. Sccond, high-speed vehicles tend 10 be slender, and large aspect ratio implies that the
ratio xR’ can atain large values. Third, and perhaps most signiticant, the relative boundary-layer
displacement thickness 8 /L° grows as A7, as shown in Fig. 3 for flow over a flat plate.  (Figure 3
further shows the significant effect of 77 on displacement thickness by comparing results based on 1y pi-
cal wind wanel and flight edge temperatures.) For fow along a cylinder, the ratio 67/L° s also a slow
function of the curvature itself” as shown in Fig. 4. Thus ¢q. (6) is a weakly nonlincar equaton tor €,
given M, Re., and x*/R°. For a high-speed Right vehicle such as the proposed NASP, where M 1,

Rey .0 (10%. and A 1, then C=0 (1071 at aft fuselage stations. In the next section. primary instabil-

iy growth rates will be shown 1o be sensiuve to curvature of this order.

5. PRIMARY INSTABILTTY THEORY

In this section, we consider the stability of an infinitesimally small pnmary disturbance superim-
posed on a steady, laminar, compressible mean flow. The mean velocity and temperature profiles are
obtained from the numerical solution of the 2D or axisymmetric compressible boundary-laver equations
by the spectrally-accurate method of (23]

Although the mean flow is in general a function of both the streamwise and wall-normal coordi-
nates, we invoke the classical parallel flow assumption whereby the streamwise variation of the mean
flow is considered negligible relative to the tansverse variation, a reasonable approximation for
sufficiently farge Reynolds numbers and sufficiendy short disturbance wavelengths.  As a consequence,

the primary disturbance can be written in the modal form

Fx,0,2) = §(z)e! (@ BRO-00 Lo ®)

where
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J = |pu v ) (Y)

and similarly for the veclor o In eq. (8) w-a'L” and BePTLT are streamwise and azimuthal
wavenumbers, respectively, £ ¢ L7 u] is dimensionless ume, o @) L7 1s dimensiondess cireular fre-
quency. ¢ is a complen function which detines the structure of the disturbance m the wall-nomal direc-
uon, and "¢.¢.” denotes the complex conjugaie of the preceding terms. The subsenpt "17 reters o "pri-

mary” instabthty, in contrast o "secondary” instabibity, denoted by subscript 27 1n the next secton. For
clanity, when no contusion is Tikely 1o result, unsubscripted wavenumbers and trequency refer to the pri-
mary instability mechanism.  To preserve the azimuthal periodicity of flow along a cylinder, the product
BR must be an integer.

Two theories are commonly used o study instability mechanisms.  Spatial theory assumes © 10
be real, while o and 3 are complex.  The real part of o is the streamwise wave number: the negatve of
the imaginary part is the spatial growth rate. In contrast, in temporal theory, o and f§ are taken as real
while @ 15 complex. The real and imaginary parts of © determine, respectively, the temporal frequency
and growth rate of the wave. In temporal theory. ¢g. (8) detines a wave with a real total wavenumber
0= \m which propagates with complex phase velooity ¢ =w'¢ at the angle Atan”'(Ba) 1o the
streamwise anis, Temporal and spatial theories give cquivalent results only for neutrally-stable waves.
An approximate relationship between wemporal and spatial theortes 1s given by the Gaster transformation
[30]. which s increasingly valid as growth rates tend toward zcro. In the present analysis, we consider
only temporally-growing instabilities.

The formudation of the cigenvalue problem for the analysis of temporally-cvolving instibility
waves in compressible flows is well documented in Mack (3] and 1ty numerical solution via spectral
collocation methods 1s described thoroughly in Macaracy ot al [32]. All results presented in this section
were obtained using temporal lincar stability codes which are variants of that deseribed in [32], 10
which the reader s referred for further detail.

A comprehensive review of the lincar sabthty of compressible boundary layers can be found in
the works ot Mack [31] and Malik [33}. For completeness, some relevant results are restated here. In

bricf, there are at least two fundamental ways in which instability mechanisms in incompressible and




- 10 -

compressible boundary layers difter. First, unstable modes in compressible wall-bounded flow may
exhibit either viscous or invisaid character. Second, tor high-speed compressible low, multiple instabil-

ity modes may coexist,
Neutrally-Stable Modes

Unlike the incompressible Blasius boundary layer, whose velocity profile is noninflectional, the

comprassible flat-plate boundary fayer possesses a "generalized intletion pomnt” detined by

=Py =0 (10

where subseript "0" denotes time-averaged (mean) quantites.  As first observed by Lees and Lin [1].
the presence of a generalized inflecton point is necessary, and, with additional nuld restrictions.
sulticient to guarantee the existence of an inviscid neutral mode. A turther generalization of condition
10) 1o compressible flow along a cyvimder can be found in Duck’s recent work [20]. In addition, there
exist nomnflectional inviscid neutral modes.  Inflectional ncutral modes travel with a phase velociy
cqual to the velocity of the mean flow at the generalized inflection point. whereas noninflectional neu-
tral modes travel with phase velocity equal to the edge velocity w, [34]. The practical implication for
tinite Re, . of the existence of both noninflectional and inflectional inviseid neutral modes is that, m
wall-bounded supersonic flow, unstable modes may exhibit cither viscous, inviscid, or mixed character,
In contrast, Tollmien-Schhichting (TS) instability modes in the incompressible flat-plate boundary layer
arc purely viscous in origin.  Here an instability mode is considered to be inviscid in origin it s
growth rate increases monotonically as Re « increases, whereas it is considered viscous if the instabihity

vanishes as R(’L. —y00,

The "First-Mode” Instability

In some sense, the so-called "first-mode” instability 1s the analog in compressible flow to the TS

instability in incompressible flow. For edge Mach numbers below about 1.6, the inflection point lics
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close to the wall and the first-mode instability is of cssenually viscous nature. As Mach number
increases the viscous instability mechanism weakens and the first mode instability acquires invis 'd
character, as the generalized inflection point migrates further fromt the wall. Above about M, =22 invis-
cid amplification rates increase dramaticaily with increasing M, . For edge Mach numbers above about
3.8, the first-imode instability can be considered purcly inviscid, in the sense that viscosity has only a
stabilizing inflience over the entire range of o. Finally, unlike TS instabilitics in incompressible flow,

first-mode instabilitics in supersonic flow are most unsiable when oblique (B20) [31).

The "Second-Mode" instability

For high supersonic and hypersonic Mach numbers, there cexist high-frequency modes of instabil-
ity in addition 1o the "first” instability mode. The first of the so-called "higher” modes is lermed the
"seccond” mode. In the flat plaic boundary layer, it first appears at about M,=2.2 and becomes more
unstable with increasing Mach number until about M,=4.5, wherc it is maximally unstable. The second
mode dominates the first mode somewhere in an interval of about M, =3 to M, =4, depending upon cedge
temperature and other conditions. It remains the most "dangerous” (unstable) mode for high hypersonic
flow. Unlike the first mode, the second mode is most unstablc when it propagates in the dircction of
the mcan flow *1].

For the flat-platic boundary layer at M,=4.5, the rcgions of instability for 2D (B=0) first and
sccond modes are distinct, as shown in Fig. 5, adapted from Mack {31]. The first and second-mode
"neutral-curves™ correspond 1o parameter pairs (@tRe, «) for which disturbances of the form (8) are ncu-
trally stable. Paramecter valucs corresponding to points within (without) the ncutral-curves identify
exponentially growing (decaying) disturbances. The lower and upper scctions of cach neutral curve arce
commonly referred to as "branch 1" and "branch 2", respectively. The points on the upper and lower
branches corresponding to the inviscid limit (Re . —»e0) identify respectively the “inflectional” and

"noninflectional” inviscid neutral modes described in a previous subscction [34].




Eigenfunctions

Figures 6 comparc and contrast the cigenfunctions of highly-amplificd first and second-mode dis-

turbances in high-specd flow along a cylinder. The parameters of the flow are

M. =45 ; Re,.=9894 (Rey, =10000.) ; 7, = 110°R an
Pr=07 ; y=14 ; C =01

The first-mode disturbance has A=58° and wavenumbers (0,)=(0.0495,0.0792). The second-mode dis-
turbance is axisymmetric with wavenumbers (0,8)=(0.2276,0.0). it is intcresting to note that the tem-
perature and density componcnts of the cigenfunctions strongly dominate all other components, a distin-
guishing characteristic of instability waves in high-speed boundary layers. For the second mode at
M,=4.5, the maximum amplitude of the temperature fluctuation is more than 15 times that of the
strcamwise velocity fluctuation. The amplitude peaks of the temperature fluctuations occur very ncar
their respective critical layers (where phase velocity equals mean streamwise velocity), »s denoted by
the vertical dashed lines in Figs. 6. This suggests that the critical layer plays a special role in high-
specd transition. It is also interesting to note that the vertical component of the perturbation velocity is
insignificant in the first-mode case, whereas it has magnitude roughly equal to the streamwise perturba-
tion velocity in the sccond-mode case. The eigenfunctions for the moderate curvawre (C=0.1) case

shown in Figs. 6 differ only slightly from their respective flat-plate (C=0.0) counterparts.

Effects of Transverse Curvature

We now address how transverse curvature affects stability, relative to the stability characteristics
of flow over a flat plate. In Fig. 7, we vary o to extract a vertical "slice” through Fig. 5 at a fixed
Reynolds number Re, .=955.7, denoted in Fig. 5 by the vertical dashed line. The solid and dashed lines
of Fig. 7 contrast the results for flat-platc and cylindrical geometry (C=0.1), respectively. In both
cascs, it is clear that, at Mach 4.5, sccond-mode disturbances are the most "dangerous”, with growth

rates five times thetr 2D (axisymmetric) first-mode counterparts and roughly twice that of the most
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unstable oblique (helical) first modes. There is a twofold effect of transverse curvawure on axisym-
metric first and second modes: a stabilizing trend characterized by a suppression of the first and
seccond-mode peaks; and a shift of the most unstable wavenumbers toward shorter wavelengths. In con-
trast, the oblique first mode at these conditions is destabilized by increasing curvature. These trends
have been observed and previously reported by Malik and Spall [21), who use spatial stability theory.

In Figs. 8, we examine the sensitivitics of the growth rates of two second-mode disturbances of
fixed wavenumber to variations in the curvature C. In principal, this is analogous to forcing the boun-
dary layer at a fixed frequency and observing the change in growth rate at a fixed station as the radius
of the cylinder diminishes. As in Fig. 7, Re, .=955.7 and M,=4.5. For =0.20, ncar the fower branch of
Fig. 7 where the rate of change of the growth rate with respect to wavenumber is large, the variation in
C has significant cffect on the growth rate (Fig. 8a). In contrast, the cffect of curvature is only
moderate for 0=0.22, ncar the maximally unstable wavenumber (Fig. 8b). Figures 8 also show the rela-
tive contributions of the "direct” and "indirect” effects of curvawre, as defined in Section 4, to the
"combined” effect. To obtain the "direct” influence curve, we use a flat-plate mean flow and introduce
curvature only in the linearized disturbance cquations. In contrast, the "indirect” influence curve results
if we account for curvature in the mean flow but not in the disturbance cquations. Qualitatively, the

indirect and direct effects on the second mode appear to be additive.

We close this section with a brief discussion of how temporal linear stability theory is adapted to
approximatcly modecl spatially-evolving disturbances in a growing boundary layer. In temporal lincar
theory, a disturbancce of fixed dimensional wavelength (wavenumber) is the approximate analog of a
fixed-frequency disturbance in spatial theory. In Fig. 5, each ray emanating from the origin corresponds
to a unique dimensional wavenumber, three of which are identified as o, < a,, < . Points along each
ray correspond to unique valucs of the length scale L”, or equivalently by eq. (3), to a unique strcam-
wisc station x*. The low-wavenumber (low-frequency) disturbance, denoted by o, can trigger only a
first-mode instability, wherecas the high-wavenumber disturbance, denoted by o, can give risc only 10 a
second-mode instability. However, the disturbance of moderate wavenumber o, can trigger cither first

or second-mode instabilitics, depending upon L.




214 -

In a growing boundary layer, the increase in L° associated with increasing x° leads natrally to
the growth, stabilization, and decay of disturbances of certain wavenumbers o . For example, in Fig. 5,
point £ on the lower branch (branch 1) identifies the value of x* beyond which a small-amplitude dis-
turbance of wavenumber o, becomes unstable and begins to grow cxponentially. At the value of x°
corresponding 1o point F on the upper branch (branch 2), the disturbance again passes through neutral
stability. Further downstream the disturbance is stable and its amplitude will decay. If nonlinear
clfects are insignificant, the wave auains its maximum (presumably finite) amplitude at peoint F, and the

ratio of amplitudes at points F and E is given by

F
A ;' w; (x)dx
f» =t (12)
E

where ®, (x) is the growth rate as a function of position x along the ray. Nonlinear saturation mechan-
isms may dramatically alier the scenario above if wave amplitude becomes large; however, because of
the relatively low growth rates of instabilitics in high-speed boundary-layer flow, lincar theory is prob-
ably adequate to describe the primary instability mechanism unless the flow is forced at very high
amplitudcs.

Figs. 5, 7, and 8, and cq. (12), taken together, imply that moderate transverse curvatureé may
significanuly alier the long term temporal or spatial evolution of primary instability waves, particularly
forced instability waves. In the next section we show the onset of secondary instability 10 be quite sen-
sitive 10 the amplitude of the primary disturbance. Thus, curvature may exert an indirect yet significant

influence on transition.

6. SECONDARY INSTABILITY THEORY (SIT)

The sccondary instability thcory on which the results of this section arc based is a generalization
10 compressible flow of the work of Herbert [91. Delails can be found in the recent work of Ng and

Erlcbacher [24], which is summarized below.
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We consider the stability with respect to small perturbations of an axisymmetric base flow
comprised of a stcady, parallel mean flow onto which a finite-ampliwde, "ncutrally-stable” primary dis-
turbance is superimposed. Specifically, following the notation of the previous section, the base flow can

be writtcn

t((n-mlr)

Tt x,2) = Fo(z) + €17(2)e + c.C. (13)

where subscripts "0" and "b” refer to "mean” and "base” flows respectively, and "g," is the amplitude of
the primary instability wave (normalized so that the maximum amplitude of the temperature fluctuation
is unity). Here we consider only axisymmetric primary waves, although in thc morc general theory
{24], the primary wave can be oblique (helical). Again we restrict consideration to the temporal model
of stability in which the wavenumber a is real. In a frame of reference x” = x — ¢ ;¢ which moves with
the phase velocity ¢,=Re(w,/a) of the primary wave, the base flow is independent of time and periodic
in the streamwise spatial dimension. Consequently, the stability analysis is amenable 1o Floquet theory
{91, which applies to differential equations with periodic coefficients. With guidance from Floquet

theory, a general ansatz for a secondary disturbance ensemble of N wave components is as follows:

- e Ni2-1_ o,
TotxBz)=e Pe 2 PR Y G ()" +ce. (N even) (14a)
j=Nr2
= sy (N-1y2 .
ZAtxBz)=e Ce 2 PR S B, (2)e% 4ce. (N odd) (14b)
j=—(N-1)2

where egs. (14a) and (14b) are valid for an even and odd number of wave components respectively. In
eqgs. (14), subscript "2" denotes "secondary” disturbance, and 4 is th¢ "dctuning parametcr”. Hen-
ceforth, B without subscripts refers to the azimuthal wavenumber of the sccondary disturbance. For
h=1, the secondary disturbance is of subharmonic (H) type, whereas for h=0 it is of fundamental (K)
type. For 0 < h <1, egs. (14) model so-called "detuned” sccondary instability modes. In practice, the
parameters of the ncutrally-stable primary wave correspond to some point along the upper branch of the

neutral-stability curve, in kecping with the discussion of Fig. 5 in the previous section.
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Let us now choose wavenumbers o and 3 and suppose § = g, + €,7,, where g, and @, are
defined in eqgs. (13) and (14), respectively, and where €, is the amplitude of the secondary disturbance,
presumed small.  Substitution of g into the compressible Navier-Stokes equations, neglect of nonlincar
terms in €7 and €7, and discretization in the z direction, results in a complex gencralized cigenvalue

problem tor the cigenvalue ®; and the discrete eigenvector §; = (@54, &1, 821, ...17 . namely

(AD2+ A0 + A8, = 0A D, (15)

In cq. (15), D? denotes a p-fold discrete spatial differentiation operator, and the 4;’s are complex
matrices of dimension SMN x SMN, where M is the number of discrete grid points in z. The nearly
onc thousand lincs of FORTRAN code required to evaluate the coefficients of the A; matrices arc gen-
erated with the help of MACSYMA, a symbolic manipulation language, without which the analysis of
compressible sccondary instability would be a formidable task. Even with a highly-accurate numerical
method, such as the spectral collocation method in current use, in which typically M =73, the memory
requircment for an cigenvalue calculation of N>6 becomes prohibitively large. Fortunately, only a very

few components of (14) are of major importance, as suggested in Table II.

Eigenvalue vs. Number of Components
N Im(w,) -Re(wy)
2 0.002416 <10
3 0.002411 <10™
4 0.002406 <107

Table II. Variation of the Eigenvalue of a Subharmonic Sccondary Instability
with Number of Componcnts V.

The results presented in Table II are for subharmonic (h=1) secondary instability. The flow parameters
arc the same as in egs. (11). The primary disturbancc is an axisymmetric second mode of wavenumber
0=0.2523, amplitudc £,=.085, and frequency w, = 0.2275 + i0.436x107™. The azimuthal wavenumber
of the secondary disturbance is $=0.2673. Duc to mcmory limitations and contamination by round-off

error, it is not computationally feasible 1o include enough components in the cigenvaluce problem to
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demonstrate convergence of the ansatz (14) in a rigorous mathematical sense. Rather, we have verified
the cigenvalues by comparison against spectrally-accurate direct numerical simulation. With the inclu-
sion of just two (N=2) wave components in the sccondary disturbance, the cigenvalue is correct 0 two
significant digits. That Re(w,) is essentally zero in the frame x” implies that the primary and secon-
dary disturbances are phase locked.

Figure 9 displays a rather typical scenario for secondary instabilities at subsonic and low super-
sonic Mach numbers. The parameter values for this test case, in which four components (N=4) have

been retained in the ansaiz (14), are

M, =16 ; Re.=6132 (Re.=1641) ; T, = 520°R (16)
a=00867 ; Pf=0.1336 ; C =0.051

The subharmonic secondary instability mechanism is favored at low to moderate amplitudes of the pri-
mary disturbance, whereas the fundamental secondary instability is more unstable at higher primary
amplitudes. This suggests that subharmonic instability is more "dangerous” in natural transition in this
speed range, in keeping with experimental observations for low-speed flow. At higher Mach numbers,
there is some evidence that subharmonic secondary instability is yet more strongly favored. Figure 10
displays the growth ratc of the sccondary instability as a function of the dctuning parameter h for a
fixed, moderate-amplitude (g,=0.085) primary disturbance. The parameter values of the flow are the
same as thosc in egs. (11) except that ReL.=994.6. The disturbance parameters are 0=0.2506, BR =21,
and ¥=2. Of all possiblc secondary instabilitics, the subharmonic type (k=1) is most unstable. Morc-
over, no fundamental type instability exists for thesc parameter values. Conscquently, we consider hen-

ceforth only sccondary instabilities of subharmonic type.

The nature of secondary instability is that it is triggered only after the primary has achieved some
threshold amplitude. This is clearly shown in Fig. 11 which presents the growth rate of a subharmonic
secondary disturbance of N=2 vs. primary wave amplitude €,. Again, the flow parameters arc the same

as given in egs. (11), except that Re, .=955.7. In this case, the disturbance parameters are a=0.2400
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and B=0.2000. For €, < 2.5%, no secondary instability is present. For €, > 2.5%, sccondary instabili-
ties exist which, at large €,, attain growth rates slightly higher than that of the maximally unstable
second-mode disturbance at the same Re, «. Figure 11 also compares the results for the flat plate with
those of a cylinder of curvature C=0.1. It appears that sccondary instabilities per se are little affected
by modecrate transverse curvature, This is further substantiated in Fig. 12, which shows only slight
influence of transverse curvaturc on the growth rate of the secondary instability, for a fixed 8.5% pri-
mary disturbance amplitude. However, since the growth rate of the secondary disturbance is strongly
dependent on primary disturbance amplitude, which is itself sensitive 1o curvature effects (refer to Fig.
5, eq. (12), and Fig. 11), the indirect influence of curvaturc on secondary instability may be substantial.
Except for the variation in C and the fixed €,, the parameter values for Fig. 12 arc the same as those

for Fig. 11.

It is interesting to comparc the cigenfunctions of primary (Figs. 6) and secondary disturbances,
the latter shown in Fig. 13. Here, the parameter values are the same as those given for Table II, with
N=2 and €,=0.085. Like the cigenfunction of the primary disturbance, the cigenfunction of the secon-
dary disturbance is dominated by the temperature component which peaks in amplitude near the critical
layer (z"=1.088"). However, unlike the primary mode, the sccondary cigenfunction has very little
structure near the wall. Remarkably, the structurc of the eigenfunction of the subharmonic secondary
disturbancce is qualitatively very similar to that of a helical first-mode disturbance (Fig. 6a).

The amplitude of the sccondary disturbance cigenfunction, peaked well away from the wall, its
relative insensitivity to changes in the mean flow (refer to Fig. 12), and its relatively large growth rate,
suggest that the secondary instability mechanism is predominantly inviscid. This suspicion is confirmed
by Fig. 14. For a fixed primary disturbance with Re, «=955.7, 0=0.2400, and €,=0.085, the Recynolds
number of the cigensystem for a sccondary disturbance of B=0.2000 and N=2 is allowed 1o vary
artificially from about 10° to 1.5x108, whilc all other parameters remain fixed. The growth rate of the
sccondary mode increases monotonically with increasing Re, . and asymplotes a laige Ke, » 10 approxi-
maie values of 0.0053 for C=0.0 and 0.0052 for C=0.1. The figure confirms once again, that for fixed

primary disturbance amplitude, the sccondary instability mechanism is minimally influenced by
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moderate transverse curvature,

7. DIRECT NUMERICAL SIMULATION (DNS)

The 3D, compressible Navier-Stokes equations in primitive variables [p,u,v,w p] (where p is the
pressure) are solved by a highly-accurate spectral collocation method developed to numerically study
instabilitics in the flat-plaic boundary layer [S]. The algorithm, adapted to the cylindrical (x,6,z)-
coordinate system of Fig. 1, treats cither flat-plate or cylindrical geometry, depending on the value of a
switch parameter. A temiporal model of stability is assumed, in keeping with the lincar analyses of pri-
mary and secondary instabilities presented carlier. As before, the mean flow is regarded as locally
parallel and subject to temporally-evolving, spatially-periodic perturbations. Since the parallel mean
flow does not exactly satisty the viscous Navier-Stokes cquations, small forcing terms are added to the
governing equations sufficient to suppress temporal evolution of the mean flow. The spectral colloca-
tion method employs Fourier basis functions in the periodic streamwise-x and azimuthal-0 directions,
and Chebyshev polynomial basis functions in the aperiodic wall-normai-z direction. Stretching and
clustering mappings in the (finite) wall-normal direction concentrate collocation points in regions of
severe gradients; i.e., at the wall and at the critical layer. These mappings are detailed in {5].

The governing equations and boundary conditions define an initial value problem which is
intcgrated in time explicitly, by means of a 3rd-order, low-storage, Runge-Kutta scheme {35]. Initial
conditions arc formed by superposition of a parallel mecan flow, derived from a specurally-accurate
boundary-layer code [23], and eigenfunctions of primary and sccondary disturbances, generated from
the temporal stability code of [24], also spectrally accurate. The mean boundary-layer profiles are gen-
erated assuming an adiabatic wall. In the direct simulation, the temperature at the wall is kept fixed at
its mean value, and no-slip conditions arc imposed on the velocity components. Either Dirichlet or
Neumann conditions are enforced at the far-ficld boundary, with litile effrct on the solution provided
the boundary is at sufficiently large z. The valucs of density at the wall and at the far-ficld boundary
arc obtaincd by projecting forward in time using thc Runge-Kutta integrator. Pressure at the wall is

extracted from the equation of state.
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Test Case

The parameters of the test case are as follows:

M, =45 : Re.=99%6 ; T,=1I0°R an
Pr=07 ; y=14 ; C =01

The Mach 4.5 case at a typical wind-tunnel edge temperature was selected for several reasons. As
mentioned previously, the second mode is most unstable at Mach 4.5 so that the most likely type of pri-
mary instability is well-defined. Furthermore, this case has been investigated previously for flow over a
flat platc by Mack [31], using lincar stability theory, and by Erlebacher and Hussaini {S], using dircct
numerical simulation. Thus, there is data against which to compare the results for cylindrical flow.
Finally, wc assume a moderate degree of curvature (C=0.1), large cnough to influence stability, yet

within the range of values encountered in high-speed flight.

Initial Conditions

The wavenumbers, ampliudes, and eigenvalues of the instability waves imposed imtially arc

given in Table III below.

Initial Conditions
Instability o B 0] £
Primary (1,0) 0.2506 0.0 0.2261 + 0.00032i 0.0850
Secondary (1/2,.£1) 0.1253 +0.2079 0.2261 + 0.00253i 0.0085
Sccondary (3/2,11) 0.3759 +0.2079 0.2261 + 0.00253i 0.0085

Table I11. Disturbance initial conditions

For simplicity, we adopt a modal notation whereby "(i.j)" refers 1o a wave of wavenumbers (i o,/ B).
The primary (1,0) wave is an axisymmetric sccond modce of ncarly ncutral stability, whose parameters

correcspond to a point ncar the upper branch of the sccond-mode necutral curve. The secondary distur-
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bance, obiained in the manner of the previous section, is of subharmonic type with BR=21 and N=4.
The (1/2,1) component of the secondary wave ensemble has A=60°. For this value of X, the secondary
disturbance is very nearly maximally unstable with respect to B. The initial amplitude &, of the secon-
dary wave enscmble is ten times smaller than that of the primary wave, based on the relative peak

amplitudes of the temperature fluctuations of the (1,0) and (1/2,1) waves.

Results

The results shown here are for a simulation of 12x12x65 resolution with equally-spaced points in
the periodic dimensions and with the near-wall collocation points in the wall-normal direction distri-

buted as shown by the symbols in Fig. 16. The bounds of the computational domain are

0<x <™

o

2n
<0< - 1
0<0 iR (18)
032,515

The fully-explicit time advancement results in a severe constraint on the time step when used in con-
junction with the Chebyshev spectral collocation method.  About 8000 time steps per period of oscilla-
tion of the primary arc required to maintain numcrical stability. The simulation requires about 38
minutes of CPU timec on a Cray Y-MP per period of oscillation. Resolution (decay of the spectral
coefficients) was monitored throughout the computation, which was halied at about 38 periods (24 CPU
hours) when resolution began to deteriorate rapidly. Work is in progress to continue the simulation
further into the nonlinear regime using a refined mesh and a high-order compact-differencing scheme in

the wall-normal dircction.

Fig. 15 shows the temporal cvolution of the "energy” in various harmonics of the primary and
secondary disturbances, based on a Fourier decomposition in the periodic dimensions and an intcgrated

average in the wall-normal dimension; namely,




2
« ‘max

2 ;o2 nr
5 i[p“[ll/,j| + 1V, 12+ W, | = dz (19)

[ -
~

E, =

to

where upper case U, represents the (i,5)-th complex Fourier component of the streamwise velocity, ete.
Solid and dashed lines show results of the simulation whereas circles denote the predicted values based
on lincar theory for primary and sccondary instabilitics. The growth rale of the primary (1,0) wave is
in close agreement with theory for more than 30 periods of oscillation. [Initially, the (1/2,1) and (1/2,-1)
(coincident) components of the secondary disturbance grow at a rate which agrees to several significant
digits with the values predicted by secondary instability theory. These modes begin to depart toward
slightly higher growth rates at around 10-15 periods of oscillation of the primary. Over the lengthy
integration, the slightly non-neutral primary increases in amplitude by a factor of about 1.5 as shown in
Fig. 16. The squares in Fig. 15 denote adjustments to the theory 1o incorporate the gradual increase in
amplitude of the primary, and arc obtained by integrating the following sct of ordinary differential

cquauons for the primary and sccondary amplitudes A and A ,, respectively:

@ i
lm((l)l)Al (—0)
dt

dA, ,

— " Im(wA DA,

In cys. (20), Im(w;) 1s assumed constant, but Im(w-(A 1)) is interpolated from the dawa in Fig. 11, This
correction slightly overpredicts the upward deflection in the growth of the (1/2,1) mode. In contrast, the
(372.1) and (coincident) (3/2.-1) components of the sccondary disturbance grow consisiently at the rate
Im{w, + ©,), denoted by triangles in Fig. 15. This is precisely the rate one would anticipate based on a
weak quadratic nonlincar interaction between the primary (1,0) wave and secondary (1/2,1) wave.
Qualitative agreement between theory and simulation persists until about period 35, when the
growth rate of the primary disturbance deviates significantly from the value predicted by linear theory.
At this stage, modes generated by nonlincar interactions are attaining significant energics, and transition
appears 10 be imminent. In particular, the (1,2) mode, which originates from the self-interaction of the

(1/2,1) wave, has an cnergy content nearly cqual to that of the primary instability wave. By the time
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the computation is terminated at period 37.7, the tcmperature component of the secondary (1/2,1) wave

has grown to more than 15 umes its initial amplitude, as shown in Fig. 17.

Reynolds Stresses

Figure 18, obwined from the results of DNS, presents the four significant components of the six

possible Reynolds stress components.  These are computed in temporal theory according to

_Upou‘ ‘u,'rd 8dx

21
jrdex ¢h

T,,(z4)=

where primes denote perturbation variables; e.g., u” = u-u, The individual curves in the four plots
represent the wall-normal distribution of Reynolds stress at intervals of 6 periods in time, beginning
with the initial condition and ending at period 36. With the exception of the 1, , componcnt, all Rey-
nolds stress components are peaked at the critical layer, denoted by dashed lines. In Fig. 19, we exam-
in¢ the relative contributions of the primary and sccondary disturbances to the t,, component. It is
clear that the large growth in Reynolds stress at the crideal layer is due almost entirely to the secondary
instability mecharusm.  Fig. 19 further compares the results of SIT and DNS with regard to 7, ,.
Theory and simulation can be considered in qualitative agreement to about period 18. Beyond that,
there 1s gradual broadening of the stress peak in the DNS results, due presumably to nonlincar effects.
In Fig. 20 we make use of the Gaster transformation [30, bascd on the phasc speed ¢ =Re(w, ) a
of the primary wave, to convert the temporal cvolution of t,, o an approximate spatial distribution.
For clarity in Fig. 20, intervals between tick marks along the strecamwise x axis are 10 displacement
thicknesses in length whereas intervals in the radial direction cach denote a single displacement thick-
ness. Morcover, it should be noted that the contour intervals are different for Reynolds stress levels
below and above 0.04x10™. 1t is interesting to view Figs. 19 and 20 in light of the high-speed experi-
ment of Fischer and Weinstein [15], in which transition is observed to originate ncar the crivcal layer
and to propagate inwardly to the body. These figures suggest a similar evolution to transition and a

possible link between secondary instability theory and observed phenomena.
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The initial and final tmes of the temporal simulation correspond via the Gaster transformation
{30] to approximate initial and final streamwise stations of x;=10R" and x}=19R" respectively. Over
this spatial extent, the boundary layer would have thickened by about 35%, a change of length scale
larte enough 1o significantly alter the growth of the primary disturbance according to Fig. 5. 1t appears
that modeling the growth of the boundary-layer is a nccessity if direct simulation of high-speed transi-
tion is to be quantitatively valid. Within the context of temporal DNS, this can be approximated
through time evolution of the mean flow. Aliernately, onc must resort to more computationally-

intcnsive spatial DNS.

Fluid Rotation

It has been suggested by Morkovin [34], that the "angular momenta” vector p@ is more physically
meaningful for compressible flows than is the vorticity vector @=Vx&. This can be inferred as well
from the presence of density in the generalized inflection point condition (10). In Figs. 21 we compare

L" ou ow, . A
=— — ) with contours of azimuthal angular momentum

8 "0z ox

contours ol azimuthal vorticity g =

pwg at period 37.7 of the numerical simulation. The contour patterns are quite different, duc in part to
the decrcased mean density at the wall. Particularly in Fig. 21b, it is clear that a highly rotational layer

has formed at the critical layer, with rotational peaks at intervals of the subharmonic wavelength dr/ar.

8. CONCLUSIONS

Because of the computational expense of direct numerical simulation, our work to date has been
restrictied 1o very few paramcter scts and is very much "in progress”. Accordingly, these comments

should perhaps be interpreted as "observations” rather than as "conclusions”.

1) Sccondary instability of subharmonic type exists in high-spced boundary-layer flows over flat
plates and cylinders, and is a likely path to transition. However, due to a general stabilizing trend

with increasing M, , secondary instabilitics at high-speeds arc not as "cxplosive” as their counter-




2)

3)

4)

5)

6)
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parts in incompressible flow. The regions of lincar and nonlincar growth are relatively long, and
the boundary layer may expericnce significant growth during laminar-turbulent transition. Growth
of_ the boundary layer needs to be modeled if the results of direct numerical simulation are to be
quantitatively valid.

For primary and sccondary instability mechanisms, the temperature and density components of the
cigenfunctions dominate at high-speeds. For example, at Mach 4.5, axisymmectric second-mode
disturbances exhibit peak temperature-fluctuation amplitudes which are 15 times that of strcam-
wise velocity fluctuations,

For primary and secondary instabilitics, the pcak amplitudes of the temperature fluctuations occur
at or very ncar the critical layer. Thus, the critical layer plays an important role in the instability

mechanisms which arise in high-speed, wall-bounded flows.

The principal effect of transverse curvature on primary and sccondary instability mechanisms
scems to be quantitative rather than qualitative. In gencral, axisymmetric primary instability
modes are stabilized by moderate curvature, which in turn should delay the onset of secondary
instability. Curvawre effects tend to become more significant with decreasing Reynolds number

and increasing Mach number.

The amplitude of the eigenfunction of a sccondary disturbance, with little structure at the wall;
the relative insensitivity of secondary disturbances to changes in the mean flow; the relatively
large growth rates of sccondary instabilitics; and the persistence of the sccondary instability
mechanism as Re, - —eo, all suggest that the sccondary instability mechanism is predominanty
inviscid.

In high-specd boundary-layer flow, secondary instability is responsible for large Reynolds stresses
ncar the critical layer, and offers a possible explanation for the phenomenon observed experimen-
tally by Fischer and Weinstein [15]. Morcover, insight gained trom sccondary instability theory

may provide a mcans to rcfine transition modcls based on Reynolds stresses.
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7)  Secondary instability theory offers a possible means of refining the e¥ method for transition pred-
iction, based on a primary disturbance amplitude criterion rather than on an amplitude-ratio cri-

terion.

We conclude by reiterating that there is great nced for carefully-conducted compressible stability

experiments, well-coordinated with analyses and direct numerical simulation.
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1) Cylindrical coordinate system.
Mean Flow Profiles in the Boundary Loyer along a Cylinder
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2) Streamwise evolution of mean streamwise velocity and mean temperature in the boundary layer of
a cylinder.
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Growth of Displacement Thickness with Mach No.
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3)  Growth with increasing Mach number of relative boundary-layer displacement thickness 8° /L *

a flat plate.
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4)  Variation of relative displacement thickness 8'/L°® with curvature C at Mach 4.5 (wind tunne.

conditions).
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Neutral-stability curves for first and se.cond-mode d'isturbances at Mach 4.5, with rays of constant
dimensional wavenumber: Ohs __ _ Oms o (adapted from L. Mack (31],
with permission.)
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6) Eigenfunction components of a) a helical first-mode disturbance, and b) an axisymmetric second-
mode disturbance at Mach 4.5.
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Axisymmetric and Helical Instability Modes
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Temporal Growth Rate vs. Transverse Curvature
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Secondary Instability
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9)  Growth rates of a secondary disturbances of fundamental and subharmonic types as a functions of
primary disturbance amplitude at Mach 1.6.
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10) Influence of detuning parameter A on secondary disturbance growth rate at Mach 4.5.
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Suoherronic Secondary Instability
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11) Growth rate of a subharmonic secondary disturbance as a function of primary disturbance ampli-

tude at Mach 4.5.
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12) Influence of increasing transverse curvature C on subharmonic secondary instability at Mach 4.5.
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Subharmonic Secondary Eigenfunction
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13) Eigenfunction components of a subharmonic-type secondary disturbance at Mach 4.5.
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14) Influence of increasing Reynolds number on a subharmonic secondary instability mechanism at
Mach 4.5,
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Temporal Growth of Selected Harmonics
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16) Evolution of the temperature component of the fundamental (1,0) mode.
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Temporal Evolution of Mode (1/2,1)

o period 0.0

a period 37.7
0.10

0.08

amplitude

0.06

0.04

17) Evolution of the temperature component of the (1/2,1) harmonic mode.
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Averaged Reynolds Stresses
(Six Period Intervals)
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18) Radial distribution of spatially-averaged Reynolds stresses at selected time intervals,
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Averaged Reynolds Stresses
(Six Period Intervals)
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19) Comparison between direct numerical simulation and secondary instability theory for the 1,,
Reynolds stress.




-42-

_ 25T x 10

Reynolds Stress, taul3 x
Mach=4.5 Re=10000

10**4

a)

COOCOOOCOOOOOOOS
WNNN=—OO0O0O00OoOo0O
RO LOSAIRE AW~ —~O0
[=lelelelelelalelelV FelV YlV Yo IV )
COCOOOOOCODOOODOD
COCCOOCVOOOOOTOD

b)

20) Approximate spatial evolution of the T,, Reynolds stress based on Gaster’s transformation: a)
secondary instability theory; b) direct numerical simulation.
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21) Comparison of a) iso-vorticity contours and b) contours of constant angular momentum in the 6=0
x-z plane.
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